

AIRPOXY

Thermoform<u>a</u>ble, repa<u>i</u>rable and bondable sma<u>r</u>t e<u>poxy</u>- based composites for aero structures

Deliverable 1.3

Report on the preliminary analysis and definition of specifications for the raw materials

Grant Agreement Number: 769274 Start Date of the Project: 1 September 2018 Duration: 42 months Deliverable lead beneficiary: 7-SON Due date of deliverable: 28/02/2019 Actual submission date: 28/02/2019 Dissemination level: Public

Revision history

R#	Date	Description / Reason of change	Author
0.1	30/01/2019	Initial draft for comments	Antoine DE FONTGALLAND Diego CALDERON
0.2	21/02/2019	Addition of details on protections	Antoine DE FONTGALLAND
1.0	26/02/2019	Final version	

Authors

Beneficiary	Name
SONACA	Antoine DE FONTGALLAND
IDEC	Diego CALDERON

Content

Revisi	on history	2
Autho	rs	2
Conte	nt	2
List of	Figures	3
List of	Tables	3
Glossa	ary	4
Refer	ences	4
1. E	Executive Summary	5
	ntroduction	
3. F	aw materials specifications	6
3.1		
3.2	. Raw materials specifications for the Leading-edge demonstrator	9
3.3		
3.4	Protections	13
4. 0	Conclusion	13

List of Figures

Figure 1: IDEC's Fan-Cowl demonstrator6	1
Figure 2: SONACA's leading-edge demonstrator9	

List of Tables

Table 1: Specifications of the raw materials to be used / developed for the fan-cowl demonstrator	7
Table 2: Specification for the 3R adhesive to be used for bonding the Fan-Cowl elements	8
Table 3: Specifications of the commercial prepreg used in the skin of the leading-edge	10
Table 4: Specifications of the 3R adhesive film to be developed	11
Table 5: Specifications of the raw materials to be used / developed for the webs	12

Glossary

Abbreviation / acronym	Description		
N/A	Not Applicable		
WP	Work Package		
CFRP	Carbon Fibre Reinforced Polymer		
GFRP	Glass Fibre Reinforced Polymer		
DCM	Discontinuous Compression Moulding, process in which the material is hot formed / compression moulded in one or several discontinuous steps		
ССМ	Continuous Compression Moulding, process in which the material is hot formed continuously by		
RTM	Resin Transfer Moulding		
SQRTM	Same Qualified Resin Transfer Moulding		
Enduring prepreg	The term "enduring" prepreg means that the prepreg ply is partially or completely cured, so it does not need to be stored refrigerated. The 3R material is in this case proposed as a roll or sheets of (almost) cured individual plies. Thanks to the welding properties of the 3R materials, there is no time limitation between the manufacturing date of the prepreg and its processing date		
AR/RT	As Received (No conditioning) / Room Temperature (for the test)		
HW2	Material moisture saturated at 70 $^{\circ}$ C/85%RH until equilibrium and test at 70 $^{\circ}$ C		
HW4	Material moisture saturated at 70 $^{\circ}$ C/85%RH until equilibrium and test at 120 $^{\circ}$ C		
FVC	Fibre Volume Content		
BVID	Barely visible impact damage		

References

[1]	D1.1. Report on the preliminary specifications for demonstrators		
[2]	D1.2. Report on the preliminary analysis and definition of process technologies requirements for		
	manufacturing, bonding and repair		
[3]	RTCA DO-160. Environmental Conditions and Test Procedures for Airborne Equipment		
[4]	SONACA Memo: Demonstrator & process definition		

1. Executive Summary

In order to achieve the project's objectives, the Work Package 1 aims at defining the specification for the demonstrators, the processes involved and the raw materials.

In this Deliverable D.1.3, end-users partners IDEC and SONACA defined their specifications for the raw material to be used or developed in the project for their respective demonstrators, as well as the expected mechanical properties of the resulting laminates.

This deliverable presents the collected specifications that will be used as input for the development of the different 3R resin system / 3R adhesive / 3R prepreg.

2. Introduction

Several 3R materials will be developed by CIDETEC and evaluated in the AIRPOXY project in order to manufacture the two demonstrators proposed by IDEC and SONACA.

This deliverable presents, for each element of the sub-components, the requirements of the materials that will be used and / or that shall be developed

The specifications include:

- Details on the commercial materials with which the developed 3R material shall be compatible.
- Physicochemical properties related to the manufacturing processes.
- Mechanical properties that the final laminates should be able to withstand.
- Requirements regarding the resistance to fluids.
- Requirements regarding the protections that would be applied in production on the 3R surfaces.

3. Raw materials specifications

3.1. Raw materials specifications for the Fan-Cowl demonstrator

3.1.1. Fan-Cowl demonstrator

Idec's demonstrator is a fan-Cowl sub-component made of three distinct elements: a skin, a transverse stiffener and a longitudinal stiffener.

Both the skin and the transverse stiffener will be manufactured in RTM, using commercial dry Fabric / Unidirectional and 3R resin system (to be developed in this project).

The longitudinal stiffener will be made through thermoforming of 3R materials (Commercial CFRP woven fabric and UD with 3R resin system).

Once the three elements are manufactured, they will be bonded together using a dedicated 3R adhesive. See deliverable D.1.2 for more details on the bonding process.

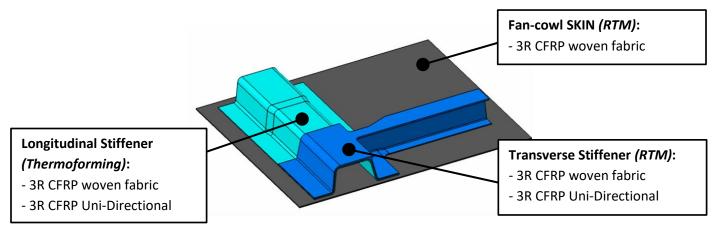


Figure 1: IDEC's Fan-Cowl demonstrator

3.1.2. Raw material specification for the SKIN and the Transverse Stiffener (Fan-Cowl)

The skin of the Fan-cowl and the Transverse Stiffener will be manufactured in RTM (separate moulds). Two reinforcements should be used: a dry 5 Harness Satin Carbon Fabric and an Unidirectional. The Skin will only use the fabric reinforcement while the transverse stiffener will use both the fabric and the Unidirectional.

The RTM resin will be a 3R RTM system developed by CIDETEC on the basis of a classical certified injection resin with a specifically designed hardener allowing the 3R properties of the material.

Table 1 hereunder defines the specifications for the raw materials of the skin and the transverse stiffener, as well as the mechanical properties of the expected composite materials.

Mat	erials	Material specifications	Unit			Va	lue		
		Viscosity	cps			<	30		
		Density	g/cm3	<1.2					
		Working time (at 80°C)	min		> 60				
		Curing time	min			<	90		
		Glass Transition Temperature (AR/RT)	°C				170		
Resin /	Hardener	Glass Transition Temperature (HW2)	°C				150		
,		Tensile Strength	MPa				- 80		
		Tensile Modulus	MPa				- 3300		
		Elongation at break	%		4 - 6				
		Flexural Modulus	MPa				- 2900		
		Flexural Strength	MPa				- 135		
		Cost	€/I				70		
		Efibre	GPa				290 L.82		
		Density Weave style	g/cm3		5H Satin	<]	1.82	UD Plain	
		Number of filaments	-		SH Satin	6	5K	ODPlain	
		Nominal Weight	 g/m2		250 - 400	t		150 - 300	
Reinfor	cements	Sizing	g/112		200 - 400	3R com	patible	100 - 200	
		Powdering	-						
		Powdering quantity	g/m2		2 faces < 6%				
		Composition or main material of reinforcements	/	Carbon fibre					
		Cost	€/m2		70			30	
		Veil	-			3R com	patible		
_		Activation Temperature (range)	°C	120 - 180					
Thermo	plastic veil	Activation Time	min	< 10					
		Cost	€/Kg	N/A					
		FVC	%			5	58		
		Stacking sequence	Degrees		(0)n			(0)n	
		Conditioning		RT	HW2	HW4	RT	HW2	HW4
		Tensile Modulus, warp direction (E11t)	MPa		> 70000			> 155000	
		Tensile Modulus, weft direction (E22t)	MPa		> 70000 > 8500				
		Ultimate Tensile Strain, warp direction (ɛ11t)	με	> 14000 > 15000					
		Ultimate Tensile Strain, weft direction (22t)	με	> 11000 > 5600					
		Comprenssion Modulus, warp direction (E11c)	MPa	>68000 >140000					
	Ply properties	Comprenssion Modulus, welf direction (E11c)	MPa		> 68000 > 140000				
			-	> 0500		> 2000	× 0000		> 4500
		Ultimate Compression Strain, warp direction (£11c)	με	> 9500	> 6900	> 3900	> 9900	> 8000	> 4500
		Ultimate Compression Strain, weft direction (ϵ 22c)	με	> 9500	> 6900	> 3900	> 30000	> 25000	> 12000
Mechanical /		In-Plane Shear Modulus (G12)	MPa	> 4500	> 3600	> 2300	> 4400	> 3500	> 2200
Phycical		Ultimate In-Plane Shear Strain (ε12)	με	> 19000	> 20200	> 21200		> 18700	
		Interlaminar Shear Strength (f13)	MPa	> 60	> 42	> 30	> 70	> 40	> 30
		Interlaminar Tension Strength (f33t)	MPa	> 25	> 18	> 10	> 65	> 45	> 30
		Stacking sequence	Degrees	Quasi- isotropic laminate					
		Conditioning			RT HW2		W2	HW4	
	Laminate properties	Compression After Impact (CAI) ⁽¹⁾	με	>4600 >3300		>2	> 2400		
		Open Hole Tension (fxx,oht)	MPa			> 380 > 3			
		Open Hole Compression (fxx,ohc)	MPa	>3	04U			>:	180
		Fracture toughness (G1c)	J/m ²				700		
		Filled Hole Compression (fxx, fhc)	MPa			275			
		Bearing (fxx,b)	MPa		900		850		180
		Pull-Through Strength (fpt)	MPa	>	60	>	50	>	40

AR/RT: As

HW2: material HW4: material

⁽¹⁾:Impact energy for a 0.3mm dent after relaxation, 35J energy cut-off

Table 1: Specifications of the raw materials to be used / developed for the fan-cowl demonstrator

3.1.3. Raw materials for the Longitudinal Stiffener

The longitudinal stiffener will be made through thermoforming of 3R flat panels which will have been produced, in principle, through RTM. During next WPs other manufacturing process, as CCM and DCM will be considered also as alternatives.

The specifications for the reinforcement are the same as for the 5 HS carbon fabric and Unidirectional that shall be used for both the Skin and the transverse stiffener. See Table 1.

Similarly, the specifications for the 3R RTM resin are the same as the ones presented in Table 1.

3.1.4. Specification for the 3R adhesive film

The bonding of the skin with the transverse and longitudinal stiffener will use a 3R adhesive film. This adhesive will have to be able to fill gaps up to 0.3mm between the elements.

The specifications for this adhesive film are given in Table 2 hereunder.

Material	Specification	Unit	Value	
	Format		Film	
Adhesive film	Thickness	mm	0.1 - 0.4	
Adhesive mm	Curing time	min	< 90	
	Tg	°C	> 170	
	Single Lap shear (AR/RT)	MPa	20	
Bond line	Single Lap shear (HW4)	MPa	17	
	G1c	J/m²	800	

AR/RT: As Received / Room Temperature

HW2: material moisture saturated at 70°C/85%RH until equilibrium and test at 70°C HW4: material moisture saturated at 70°C/85%RH until equilibrium and test at 120°C

Table 2: Specification for the 3R adhesive to be developed for bonding the Fan-Cowl elements

3.2. Raw materials specifications for the Leading-edge demonstrator

3.2.1. Leading-edge demonstrator

SONACA's demonstrator is a sub-component from a wing leading edge representative of commercial airplane parts. The demonstrator is a shorter (with a maximum span-wise dimension around 2.2m) and simplified version, composed of three elements: one skin and two webs.

The WEBS use 3R materials (Commercial dry CFRP/GFRP woven fabrics with 3R resin system) to be developed in this project, that will be put in shape through thermoforming.

The SKIN uses commercial prepreg materials and a 3R adhesive film (to be developed in this project), with the SQRTM process.

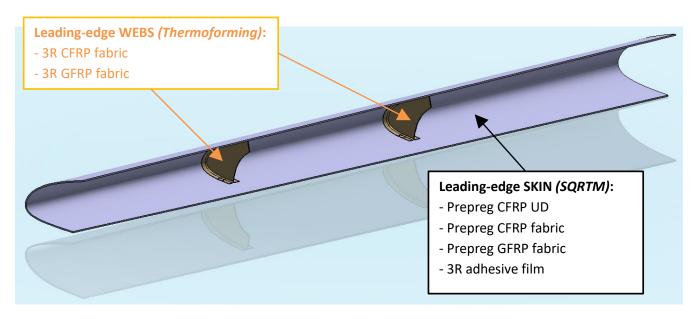
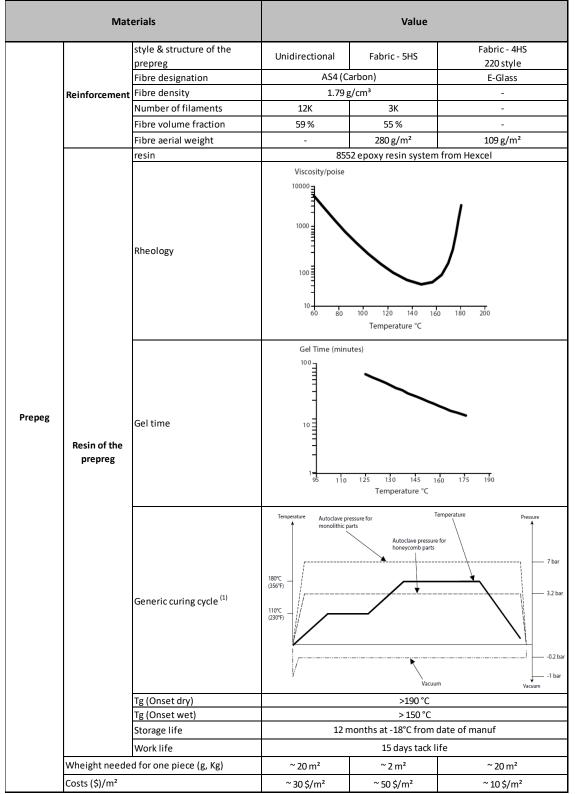


Figure 2: SONACA's leading-edge demonstrator

3.2.2. Raw materials for the SKIN (Leading-edge)

Commercial prepreg materials

Three commercial prepreg materials from Hexcel will/would be used in the skin:


- Hexply AS4/8552 RC34 AW194
- Hexply 8552S/37%/AGP280/C
- HexPly 8552/42%/220/G

The three materials use the same epoxy resin system 8552.

Table 3 hereunder presents the specifications of the commercial prepreg used for the skin of the leading-edge.

 $^{(1)}\!\!:$ See Memo - Demonstrator & Processes [4] for mor precise curing data

Table 3: Specifications of the commercial prepreg used in the skin of the leading-edge

3R adhesive film

The 3R adhesive film is one of the materials to be developed by CIDETEC in this project.

It shall serve as an adhesive film on the internal surface of the skin lay-up where the webs will be welded. The 3R adhesive film is co-cured with the rest of the skin prepregs during the SQRTM injection.

Two commercial adhesive films used in production at SONACA will be used as reference materials for the investigation.

Materials		Value			
	Adhesive	Compatible with the prepreg resin and the 3R resin of the webs			
	Thickness range	0.1 mm - 0.2 mm			
	Carrier	Polyester Mat or Knit			
	Viscosity	Higher than the prepreg			
	Tg (Onset dry)	> 170 °C			
	Tg (Onset wet ⁽¹⁾)	> 150 °C			
3R Film	Gel time	Equivalent or slightly faster than the prepreg			
	Degasing	Should not degase before 120°C			
	Curing cycle	Same as the prepreg (co-curing)			
	Storage life	12 months at -18°C from date of manuf			
	Work life	15 days tack life			
	Qty needed for one piece	~ 0.1 m ²			
	Single lap shear (Comp/comp) ⁽²⁾	25 - 35 MPa			

⁽¹⁾: After Hot / wet conditioning at 70° / 85% RH

⁽²⁾: Range of value for information. The Single Lap Shear properties of the welding process will be tested and compared to concurrent processes as Co-curing and secondary bonding.

Table 4: Specifications of the 3R adhesive film to be developed for the welding of the skin / webs

3.2.3. Raw materials for the WEBS

The webs will be manufactured through thermoforming of 3R materials. The 3R materials feeding the thermoforming process will be either 3R flat panels manufactured in RTM or stackings of enduring 3R prepregs (see Deliverable D1.2. on processes [2]).

Two types of reinforcements will be used for the webs, a carbon fiber fabric and glass fiber fabric. The specifications for the dry fibers and for the final materials (resulting from the combination of the selected fiber and the developed 3R resin) are presented in Table 5

	Materials	Value			
3R Resin Tg (Onset dry)		>190 °C			
SICILESIT	Tg (Onset wet)	> 150 °C			
	Weave style	Fabric - 5 HS	Fabric - 4 HS		
	Fiber designation	Carbon fiber	E-Glass		
Reinforcement	Thickness per ply	~ 280 μm	~ 90 µm		
	Weight	280 g/m ²	107 g/m²		
	Number of filaments	3K - 6K	-		
	Ply thickness	0.280 - 0.370 mm	N/A		
	E1 [Gpa]	62	N/A		
	E2 [GPa]	62	N/A		
Ply properties	G12 [GPa]	4.2 (RT) / 3.5 (HW2)	N/A		
(Mean values)	F11t [MPa]	900 (RT) / 800 (HW2)	N/A		
(Wear values)	F11c [MPa]	-670 (RT) / -560 (HW2)	N/A		
	F22t [MPa]	900 (RT) / 800 (HW2)	N/A		
	F22c [MPa]	-670 (RT) / -560 (HW2)	N/A		
	F12 [MPa]	100 (RT)	N/A		
	Thickness	~ 1.3 mm	N/A		
	FVC	between 50-60 %	N/A		
	Stacking sequence	QI lay-up Typically : [-45;90;+45;0] s	N/A		
	Plain tensile strength (MPa)	> 550 (RT) / > 550 (HW2)	N/A		
	Plan tensile modulus (GPa)	46	N/A		
Laminate properties	Open Hole Tensile Strength (MPa)	300	N/A		
(Mean values)	Plain compressive strength (MPa)	440	N/A		
	Plain compressive modulus (GPa)	41	N/A		
	Open Hole Compressive Strength (MPa)	300	N/A		
	In Plane Shear Strength (MPa)	95 (RT) > 75 (HW2)	N/A		
	Bearing (MPa)	885 (RT) > 680 (HW2)	N/A		
	CAI (E BVID = 1mm) (µStrain)	- 4800 (RT) / -4200 (HW2)	N/A		

Table 5: Specifications of the raw materials to be used / developed for the webs

3.3. Resistance to fluids

The materials developed in the AIRPOXY project shall resist the following fluids taking into account the exposure time defined by the RTCA DO-160 [3]:

- De-icing fluid (NATO S-745)
- Fuels
- Oils
- Greases
- Lubricant

- Cleaning agents (MEK)
- Hydraulic Fluid (Skydrol LD-4 and Hyjet V or equivalent)
- Extinguishing agents
- Water, waste
- Salted water
- Dusty air.

AIRPOXY

Protections 3.4.

The exposition of the 3R laminates to the exterior will require adequate protection. The objective of the project not being to develop any specific protection system, the 3R materials shall be compatible with the commercial protection systems already applied on exterior surfaces.

For leading-edge parts, typical protections for the exterior surfaces would include: an epoxy primer, a polyurethane erosion painting and a final polyurethane top coat.

Other exterior surfaces less submitted to erosion would require having the 3R laminate covered by one or two layers of epoxy primers before a final polyurethane top coat.

The compatibility of the 3R materials shall be assessed through adhesion tests, scratch tests, etc.

4. Conclusion

The preliminary specifications given in this deliverable shall be used as input for the selection of commercial dry reinforcements and for the development of 3R resin systems.

Dry reinforcements to be chosen are:

- CFRP fabric for the Fan-Cowl (skin, transverse stiffener and longitudinal stiffener)
- CFRP Unidirectional for the transverse and longitudinal stiffeners of the fan-cowl demonstrator
- CFRP fabric for the webs of the leading-edge demonstrator
- GFRP fabric for the webs of the leading-edge demonstrator

The following 3R resin systems shall be developed:

- 3R RTM system for the RTM injections of the skin and the transverse stiffener of the fan-cowl
- 3R adhesive film for bonding the fan cowl demonstrator subcomponents. -
- 3R adhesive film for the bonding of the leading-edge's skin with the webs.3R RTM system for the RTM injections of the flat panels for thermoforming.
- 3R resin system for the impregnation of the enduring prepreg for thermoforming.